Mike Tanner

EPSRC Proteus / Heriot-Watt University & University of Edinburgh
Proteus Research Fellow / Honorary Lecturer

Dr Michael Tanner is an EPSRC Interdisciplinary Research Collaboration Proteus Research Fellow. He has a desire to bring the most advanced single photon technologies out of the darkened physics lab and into practical application, leading him to focus on transformative applications in healthcare.
As a physicist with wide ranging experience in experimental systems, fibre optics, quantum technologies and fibre sensing he develops advanced optical systems on site at the Royal Infirmary of Edinburgh (QMRI) within the Proteus project to optimise novel fibre technologies for clinical application.

Michael has a track record in developing quantum technologies. Initially designing silicon chips for quantum information processing at the Hitachi Cambridge Laboratory and The University of Cambridge, he moved to quantum optics and single photon detector technologies with the Quantum Sensors group at Heriot-Watt University and The University of Glasgow. While developing cutting edge quantum optics experiments and new secure optical communication technologies, he applied photon counting technologies to real world sensing problems. These included time of flight depth imaging, singlet oxygen fluorescence measurements for photodynamic therapy in cancer treatment and primary temperature measurement with optic fibre. Now he applies single photon detector arrays for medical sensing, imaging and diagnosis with a focus on practical systems for translation to clinic.

dont miss

Locating medical devices through early arriving single photon imaging

The UK-EPSRC Proteus project is moving advanced research technologies towards clinical implementation. These have included bespoke optical fibres for imaging and sensing and compact fluorescent Optical Endo-Microscopy (OEM) imaging systems. Here I will discuss the application of cutting edge single photon detection technologies for medical device location deep within tissue.

Optical fibre based endoscopes are increasingly used within the human body without navigational guidance of the miniaturised fibre probe, while other medical device placement is a standard procedure in clinic.
We demonstrate optical device location with centimetre resolution in clinically relevant models, in a realistically lit environment, achieved through the detection of early arriving photons exiting the tissue. We utilise a compact packaged camera with a time-resolved single photon detector array capable of observing the passage of light.

The possibility for real time observation of device location in standard medical procedures offers the potential to change clinical practice.

EVEN MORE SEMINARS

  • Mani Naghibi: Speaking at the Oncology Convention

    Mani Naghibi
    St. Mark's Hospital

    Using nutrition therapies to positively effect cancer treatment outcomes

  • Glenn Flux: Speaking at the Oncology Convention

    Glenn Flux
    Royal Marsden Hospital

    The emergence and resurgence of radiotherapeutics for cancer treatment

  • Stéfan Halbherr: Speaking at the Oncology Convention

    Stéfan Halbherr
    InnoMedica

    Liposome pipeline addressing unmet medical needs in oncology, imaging, and neurodegeneration

  • Cheng Boon: Speaking at the Oncology Convention

    Cheng Boon
    Worcestershire Royal Hospital

    Consultant Clinical Oncologist, GI and Head & Neck

  • Chris Curtis: Speaking at the Oncology Convention

    Chris Curtis
    The Swallows Head & Neck Cancer Charity

    A patient’s journey ‘Cancer to the palace in 6yrs’